Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1136, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064152

RESUMO

Anti-tumor therapies that seek to exploit and redirect the cytotoxic killing and effector potential of autologous or syngeneic T cells have shown extraordinary promise and efficacy in certain clinical settings. Such cells, when engineered to express synthetic chimeric antigen receptors (CARs) acquire novel targeting and activation properties which are governed and orchestrated by, typically, antibody fragments specific for a tumor antigen of interest. However, it is becoming increasingly apparent that not all antibodies are equal in this regard, with a growing appreciation that 'optimal' CAR performance requires a consideration of multiple structural and contextual parameters. Thus, antibodies raised by classical approaches and intended for other applications often perform poorly or not at all when repurposed as CARs. With this in mind, we have explored the potential of an in vitro phenotypic CAR library discovery approach that tightly associates antibody-driven bridging of tumor and effector T cells with an informative and functionally relevant CAR activation reporter signal. Critically, we demonstrate the utility of this enrichment methodology for 'real world' de novo discovery by isolating several novel anti-mesothelin CAR-active scFv candidates.


Assuntos
Neoplasias/terapia , Receptores de Antígenos Quiméricos/isolamento & purificação , Linfócitos T Citotóxicos/imunologia , Linhagem Celular Tumoral , Biblioteca Gênica , Células HEK293 , Voluntários Saudáveis , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Neoplasias/patologia , Cultura Primária de Células , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/transplante
2.
Cancers (Basel) ; 13(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885044

RESUMO

1C1m-Fc, a promising anti-TEM-1 DOTA conjugate, was labeled with 64Cu to target cancer cells for PET imaging and predicting the efficacy and safety of a previously studied [177Lu]Lu-1C1m-Fc companion therapy. DOTA-conjugated 1C1m-Fc was characterized by mass spectrometry, thin layer chromatography and immunoreactivity assessment. PET/CT and biodistribution studies were performed in human neuroblastoma xenografted mice. Absorbed doses were assessed from biodistribution results and extrapolated to 177Lu based on the [64Cu]Cu-1C1m-Fc data. The immunoreactivity was ≥ 70% after 48 h of incubation in serum, and the specificity of [64Cu]Cu-1C1m-Fc for the target was validated. High-resolution PET/CT images were obtained, with the best tumor-to-organ ratios reached at 24 or 48 h and correlated with results of the biodistribution study. Healthy organs receiving the highest doses were the liver, the kidneys and the uterus. [64Cu]Cu-1C1m-Fc could be of interest to give an indication of 177Lu dosimetry for parenchymal organs. In the uterus and the tumor, characterized by specific TEM-1 expression, the 177Lu-extrapolated absorbed doses are overestimated because of the lack of later measurement time points. Nevertheless, 1C1m-Fc radiolabeled with 64Cu for imaging would appear as an interesting radionuclide companion for therapeutic application with [177Lu]Lu-1C1m-Fc.

3.
Cell Rep Med ; 2(8): 100362, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467246

RESUMO

Tumor endothelial marker 1 (TEM1) is an emerging cancer target with a unique dual expression profile. First, TEM1 is expressed in the stroma and neo-vasculature of many human carcinomas but is largely absent from healthy adult tissues. Second, TEM1 is expressed by tumor cells of mesenchymal origin, notably sarcoma. Here, we present two fully human anti-TEM1 single-chain variable fragment (scFv) reagents, namely, 1C1m and 7G22, that recognize distinct regions of the extracellular domain and possess substantially different affinities. In contrast to other, well-described anti-TEM1 binders, these fragments confer cytolytic activity when expressed as 2nd generation chimeric antigen receptors (CARs). Moreover, both molecules selectively redirect human T cell effector functions toward TEM1+ tumor cells when incorporated into experimental soluble bispecific trivalent engagers that we term TriloBiTEs (tBs). Furthermore, systemic delivery of 1C1m-tB prevents the establishment of Ewing sarcoma tumors in a xenograft model. Our observations confirm TEM1 as a promising target for cancer immunotherapy and illustrate the prospective translational potential of certain scFv-based reagents.


Assuntos
Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Linhagem Celular Tumoral , Células Clonais , Feminino , Humanos , Camundongos , Ligação Proteica , Multimerização Proteica , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/imunologia , Solubilidade , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Pharmaceutics ; 13(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451158

RESUMO

1C1m-Fc, an anti-tumor endothelial marker 1 (TEM-1) scFv-Fc fusion protein antibody, was previously successfully radiolabeled with 177Lu. TEM-1 specific tumor uptake was observed together with a non-saturation dependent liver uptake that could be related to the number of dodecane tetraacetic acid (DOTA) chelator per 1C1m-Fc. The objective of this study was to verify this hypothesis and to find the best DOTA per 1C1m-Fc ratio for theranostic applications. 1C1m-Fc was conjugated with six concentrations of DOTA. High-pressure liquid chromatography, mass spectrometry, immunoreactivity assessment, and biodistribution studies in mice bearing TEM-1 positive tumors were performed. A multi-compartment pharmacokinetic model was used to fit the data and a global pharmacokinetic model was developed to illustrate the effect of liver capture and immunoreactivity loss. Organ absorbed doses in mice were calculated from biodistribution results. A loss of immunoreactivity was observed with the highest DOTA per 1C1m-Fc ratio. Except for the spleen and bone, an increase of DOTA per 1C1m-Fc ratio resulted in an increase of liver uptake and absorbed dose and a decrease of uptake in tumor and other tissues. Pharmacokinetic models correlated these results. The number of DOTA per antibody played a determining role in tumor targeting. One DOTA per 1C1m-Fc gave the best pharmacokinetic behavior for a future translation of [177Lu]Lu-1C1m-Fc in patients.

5.
Eur J Pharm Biopharm ; 158: 233-244, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33271301

RESUMO

The tumour endothelial marker 1 (TEM1/endosialin/CD248) is a receptor overexpressed in several human solid tumours and silenced in normal adult tissues, representing a suitable and potentially safe target for radioimmunotherapy of sarcoma. To develop new tools with improved TEM1 targeting properties, a new panel of antibody fragments was for the first time evaluated preclinically following 125I radiolabelling. The antibody fragment 1C1m-Fc, with the highest human/murine TEM1 binding affinity, was extensively characterized in vitro and in vivo in a Ewing's sarcoma human xenograft mouse model. In silico studies were also performed to elucidate the influence of a single amino acid mutation in the complementarity-determining region (CDR3) of the heavy chain, upon affinity maturation of the parental clone 1C1-Fc. From this study, 1C1m-Fc emerged as a promising candidate for the development of TEM1-targeted radioimmunoconjugates, namely to be further explored for theranostic applications with other suitable medical radionuclides.


Assuntos
Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Imunoconjugados/administração & dosagem , Neoplasias/radioterapia , Radioimunoterapia/métodos , Anticorpos de Cadeia Única/administração & dosagem , Animais , Linhagem Celular Tumoral , Regiões Determinantes de Complementaridade/genética , Simulação por Computador , Feminino , Humanos , Imunoconjugados/genética , Imunoconjugados/farmacocinética , Radioisótopos do Iodo , Camundongos , Mutação , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Rep ; 9(1): 12815, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492910

RESUMO

An early bottleneck in the rapid isolation of new antibody fragment binders using in vitro library approaches is the inertia encountered in acquiring and preparing soluble antigen fragments. In this report, we describe a simple, yet powerful strategy that exploits the properties of the SpyCatcher/SpyTag (SpyC/SpyT) covalent interaction to improve substantially the speed and efficiency in obtaining functional antibody clones of interest. We demonstrate that SpyC has broad utility as a protein-fusion tag partner in a eukaryotic expression/secretion context, retaining its functionality and permitting the direct, selective capture and immobilization of soluble antigen fusions using solid phase media coated with a synthetic modified SpyT peptide reagent. In addition, we show that the expressed SpyC-antigen format is highly compatible with downstream antibody phage display selection and screening procedures, requiring minimal post-expression handling with no sample modifications. To illustrate the potential of the approach, we have isolated several fully human germline scFvs that selectively recognize therapeutically relevant native cell surface tumor antigens in various in vitro cell-based assay contexts.


Assuntos
Anticorpos/análise , Técnicas de Visualização da Superfície Celular/métodos , Sequência de Aminoácidos , Antígenos/metabolismo , Linhagem Celular , Epitopos/metabolismo , Escherichia coli/metabolismo , Humanos , Imunoterapia , Domínios Proteicos , Anticorpos de Cadeia Única/imunologia , Linfócitos T/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(6): 2312-2317, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674678

RESUMO

Adaptive immune response is part of the dynamic changes that accompany motoneuron loss in amyotrophic lateral sclerosis (ALS). CD4+ T cells that regulate a protective immunity during the neurodegenerative process have received the most attention. CD8+ T cells are also observed in the spinal cord of patients and ALS mice although their contribution to the disease still remains elusive. Here, we found that activated CD8+ T lymphocytes infiltrate the central nervous system (CNS) of a mouse model of ALS at the symptomatic stage. Selective ablation of CD8+ T cells in mice expressing the ALS-associated superoxide dismutase-1 (SOD1)G93A mutant decreased spinal motoneuron loss. Using motoneuron-CD8+ T cell coculture systems, we found that mutant SOD1-expressing CD8+ T lymphocytes selectively kill motoneurons. This cytotoxicity activity requires the recognition of the peptide-MHC-I complex (where MHC-I represents major histocompatibility complex class I). Measurement of interaction strength by atomic force microscopy-based single-cell force spectroscopy demonstrated a specific MHC-I-dependent interaction between motoneuron and SOD1G93A CD8+ T cells. Activated mutant SOD1 CD8+ T cells produce interferon-γ, which elicits the expression of the MHC-I complex in motoneurons and exerts their cytotoxic function through Fas and granzyme pathways. In addition, analysis of the clonal diversity of CD8+ T cells in the periphery and CNS of ALS mice identified an antigen-restricted repertoire of their T cell receptor in the CNS. Our results suggest that self-directed immune response takes place during the course of the disease, contributing to the selective elimination of a subset of motoneurons in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Expressão Gênica , Neurônios Motores/metabolismo , Mutação , Superóxido Dismutase-1/genética , Linfócitos T Citotóxicos/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Comunicação Celular/imunologia , Morte Celular , Sobrevivência Celular/genética , Modelos Animais de Doenças , Granzimas/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/imunologia , Fenótipo , Índice de Gravidade de Doença , Medula Espinal/citologia , Linfócitos T Citotóxicos/imunologia , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...